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Abstract Our focus on qualitative preferences is motivated by the fac

that users are often reluctant to specify numbers when they

prioritized goal states. To describe the preference ordering are asked to describe their preferences. Qualitative prefe
on goal states, we make use of ranked knowledge bases ences are much easier to elicit and sufficient for many appli-

which induce a partial preference ordering on plans. We Catlons. .

show how an optimal plan can be computed by assigning !N this paper we address two related, yet different ques-
an integer value to each state in an appropriate manner. We  tions in the context of planning with qualitative goal prefe
also show how plan optimality can be tested in a similar ences:

fashion. Our implementation is based Bt r i c- FF, one

of the fastest existing planning systems. A first empirical
evaluation shows very promising results.

In this paper we present an approach to planning with

1. Given a planning problem with ranked goals, how to com-
pute optimal plans?

2. Given a planning problem with ranked goals and a plan
P, how to test whetheP is optimal?

Introduction Considerir)g the first guestion we focus on the_: task_of com-
Classical planning distinguishes between goal states and putmtg a S|knglteh optimal Ft’l‘i‘.n' One ((): our ((jjes;gn prmm%lles f
non-goal states. If there is no plan leading to one of the goal V&S '0 Make theé computation as independent as possibie o
states, then classical planning simply fails. Agents i-rea .th¢ partlculqr planning algorithm. This _allows us to use ex-
istic environments cannot simply refrain from acting if not Sing planning technology and to benefit from further devel
all of their goals are achievable. Obviously, in such situa- OPMENtS in planning. Itis in contrast with approaches like
tions the rational thing for an agent to do is trying to achiev  (Brafman & Chemyavsky 2005) which rely on a particular
the goals in the best possible way. This requires informa- YP€ Of planners transforming the original planning prable
tion about the relative quality of reachable states. Inmothe into a constraint problem (see the discussion of related wor

words, what is needed is a preference relation on states. Theatg1e end of thﬁ pa[:t))er fo(; mon:] on E)h's |ssge). h .
planning task then consists in finding an optimal plan, that ur approach is based on the observation that a state Is

is, a plan leading to a state which is optimal according to the op';!ma: W!:EE respecft E[o th? ?r:gmal %amal _Q[rebcl)rdertlfs(tj_l
given preference relation on states. optimal with respect to a total preorder suitably extending

In general, the state space in planning is very large — ex- the original order. The total preorder can conveniently be

ponential in the number of atoms used to describe a domain. expressed using an integer value which is assigned to each
For this reason describing the preference relation onsstate St%e' lanni lqorith hi | | bound
explicitly, e.g. by enumerating all pairs in the relaticnput | Lurplanning %gorlt m usehs (tj_'s value as _ahO\r/]ver oun
of the question. What is needed is a language which allows " @ generate and improvenethod: we start with the com-
the preferences to be described concisely. putation of a plan for an arbitrary goal state and compute its
In this paper we will use logical formulae to describe the value. We then iteratively call a classical planner usirgy th
preference relation. More precisely, a ranked knowledge V&lué of the most recently found reachable state as lower
base consisting of formulae representing goals togetttar wi pound. This way a strictly improving sequence of plqns
a total preorder describing their relative importance &dus is generated Wh.'Ch is guaranteed to converge to an optl_mal
Ranked knowledge bases were already proposed in (Brewka P/an- We have implemented our planning algorithm using

1989) and have proven useful, for instance in reasoning with :he Met r!ICI;IFIE p(;a:mer, one of the fastest planning sys-
prioritized defaults. ems available (o date.

A ranked goal base induces a partial preorder on plans de- The second question, testing plan optimality, is also based

scribing the quality of plans in a purely qualitative faghio " & numerical reformulation of the original problem. Given
a planP terminating in state;, we assign an integer value

Copyright © 2006, American Association for Artificial Intelli- val p t0 each state such th&tis optimal iff there is no plan
gence (www.aaai.org). All rights reserved. P’ terminating ins’ such thatalp(s) < valp(s').
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The rest of this paper is organized as follows. In the
next section we define what we mean by a plan optimization
problem (also called partial satisfaction problem in (van d
Briel et al. 2004)), and by an optimal plan. We then in-

troduce our preference description language using ranked atomsA. Intuitively, s = {aq, ..

optimal state, that is a sequende= (a4, ..., a,) such that
~*(sr, A) is optimal among the solvable states.

In the rest of this paper we assume that the states in a
planning problem are represented as subsets of a finite set of
., ay } denotes the state in

knowledge bases. Subsequently, we present our approachwhich the atomgas,...,a;} are true and all other atoms

of solving partial satisfaction problems. To test our ideas

we show a realization of our preference languages extend-

ing PDDL. We briefly comment on further features of our de-
scription languages, e.g. the possibility of mixing qulite
and quantitative preference information. In a furtherisect
we describe our implementation and evaluation results. Af-
ter a discussion of how plan optimality can be tested, the las
section describes related work and concludes.

Plan optimization

We first recall the definition of a classical planning prob-
lem, following the textbook (Ghallab, Nau, & Traverso
2004). A classical planning problem (CPP) is a 5-tuple
I' = (S,A4,,s1,S¢) consisting of a sétof statesS, a set

of actionsA, a transition functiory : S x A — S, an initial
states; and a description of goal stat®g: C S. The tran-
sition function can be naturally extended to a functiéron
action sequences:

LN an71>)7 an)

’V*(Sv <a1: ) anflvan» = ’7(’7*(87 <a13 .-

andy*(s, ()) := s. We say a state' is reachable from state
if there exists a finite sequence of actiofis= (a1, ..., a,)
such thaty*(s, A) = s’. A states’ is called solvable if it
is reachable from the initial statg. A classical planning
problem is solvable if there is a solvable statee Sg. A
corresponding finite sequence of actiohis= (aq,...,a,)
is called solution or plan of length.

The following small extension leads to the definition of
a partial satisfaction problem (PSP). A PSP is a 6-tuple
(S, A,~,sr,Sq, ) where the relatior- C Sg x Sg is a
preorder, i.e. a reflexive and transitive relation. Inugily,

s = s’ expresses that statds at least as preferred as state
s’. As usual the preorder induces a strict partial order (de-
noting strict preference) as follows: = s iff s = s’ and

s’ % s. The other elements in the 6-tuple are understood as
above.

We will use the terms “partial satisfaction problem” and
“plan optimization problem” synonymously. The former re-
flects the fact that the goal states9a no longer represent
completely satisfactory goal states. Some of them, namely
those for which strictly better goal states exist, satisfy t
agent’s goals only partially. The latter term focuses on the
fact that taking partially satisfactory goal states intoamt
also requires information about their respective quadibyg
that this quality needs to be optimized.

A PSP is solvable if there exists a solvable state €
Sc. Whenever a PSP is solvable, there is also an optimal
solvable state, i.e. a solvable statguch that for no solvable
states’ € Si we haves’ = sands % s'. An optimal

are false. From the point of view of logic, states thus cor-
respond to propositional models, and we will use the usual
logical satisfaction symbdk to denote satisfaction of a for-
mula in a state with the obvious meaning.

Describing preferences on states

In this section we want to address the question how to rep-
resent the preference relation on goal states in a PSP.

The number of states is exponential in the number of atoms.
Therefore, an enumeration of the pairs in the preference re-
lation is unfeasible and we need a concise representation of

We will use logical formulae to represent preferences
among states. In the simplest case we can use a single for-
mula f and defines; > s, iff so = fimpliess; E f .

In many cases, however, a single formula will not be suf-
ficient and we may want to distinguish important from less
important formulae.

For this reason we will use ranked knowledge bases
(RKBs) (Brewka 1989; Benferhatt al. 1993; Pearl 1990;
Goldszmidt & Pearl 1991), sometimes also called stratified
knowledge bases, to describein this paper. Such knowl-
edge bases have proven fruitful in a number of approaches.
As discussed in (Brewka 2004), &K B alone is not suffi-
cient to determine the preference relation on states, dven i
all formulae are interpreted as goals. In addition, we need a
preference strategy which tells us how to use BB for
this purpose. Several such strategies together with a pref-
erence description language allowing to combine them are
presented in (Brewka 2004). For the purposes of this paper
we will restrict our discussion to one particular such strat
egy.

A ranked knowledge baseR(B) is a finite setF' of
propositional formulae together with a total preordepn
F. An RKB can be conveniently represented as a sequence
(Fy,..., F,) of sets of formulae such that > f’ iff for
somej: f € F; and fornoi > j: ' € F;.

Intuitively, the formulae inF}, represent the most impor-
tant goals, those A}, _; the most important ones among the
other goals etc. The preorder on states induced bi &R
is formally defined as follows:

Definition 1 LetK = (F4,...,F,) beanRKB, S a set of
states. Fors € S, j € {1,...,n} let
Fi(s):={feF;|sE [}
The preorder orf induced by, denoted- k, is defined as
s1 =k 8o iff Fj(Sl) = Fj(SQ) for all j € {1, e ,TL}, or

there is aj such thatF;(s;) D Fj(s2), and
forall i > j: Fi(s1) = Fi(s2).

plan, also called a solution to the PSP, is a plan leading to an According to this definition, a stateis considered strictly

!For practical purposes all relevant sets are assumed to be finite.
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better thans’ if — starting from leveln and proceeding step-
wise to the less preferred levels — at the first level where the



satisfied formulae do not coincidesatisfies a proper super-
set of formulae.
It is not difficult to see that is indeed a preorder and

Proposition 3 Let m* be an optimal (solvable) element
with respect toRji,, thenm™* is also an optimal (solvable)
element with respect t8.

not necessarily a total one. Since we assume that the prefer-pyoof: et m be optimal with respect t&,. Assume there

ence relation on states is given by a ranked knowledge baseig ./ such tha(m/, m) € R>, i.e.m’ is strictly better than

K as just described, we will from now on consider a PSP to . \uith respect toR. But then (3c) impliegm’, m) € R>
* )

lin
be a tuple of the forni’ = (S5, A, v, 51, Sa, K). which is a contradiction to the optimality af with respect

. . to Ry, O

Computing an optimal plan Linearizations of partial preorders can be conveniently
PSPs are considered to be harder than classical planningrepresented using integers. We will now define for each
problems since finding a plan for an arbitrary element of RKB K a valuation functiof valx which assigns an in-
Sg is not enough. An optimal solvable element w.r.t. the teger value to each goal state such that ;- s implies

given preference relation needs to be found. Unfortunately
an optimal solvable element is usually not known a priori.

Instead, we have to search the set of goals for a maximum.

As a naive approach we could randomly take an elemeht
S¢ and try to find a plan. If one is found, all elements which
are strictly smaller tham are marked as inferior and will not
be considered further. If no solution is found, the element

and possibly certain other elements are marked unsolvable.

The states, the inferior and the unsolvable elements are re-
moved fromSg and the iteration is repeated. Although this

algorithm is somewhat better than a full exhaustive search,

it does not scale well to large spacgs. Very often a search
for a plan for an unsolvable goal state is made, resulting in
high performance cost for search failures.

valg (s) > valg (s').

Definition 4 Let K = (Fy,...,F,) be anRKB, s a goal
state. Letnazvaly := 0 and for eachj (1 < j <n):

val; = mazval;_1 +1
mazval; = |Fj| x val; + mazval;_q

The K-value ofs,valk (s) is defined as

valg(s) == Z H{g € F; | s = g} x val;.
i=1

To see how this definition works consider tR& B

({a}, {b,c}, {d}).

The approach adopted in this paper is based on the fact We haveval; = 1,val, = 2 andvals = 6. The intuition is

that a state is optimal w.r.t. the preorderwhenever it is
optimal w.r.t. a suitable total order extendirgwhich we
will call its linearization.

Let R be a preorder over some domadifi of elements. In
our case the domain will be the s€t of goal states. The
derived strict preordeR> and the derived equality preorder
R= are then defined as follows:

(m,m') € R” iff (m,m') € Rand(m/,m) ¢ R (1)

(m,m’) € R= iff (m,m’) € Rand(m’,m) € R. (2)

The linearized preorddg)i, over the same domait/, the
corresponding derived strict and equality preorders shoul

satisfy the following requirements, for reasons we will see
below:

Rin O R, (3a)
Ry, 2 R™, (3b)
R D R>. (3c)

The inclusion (3a) describes the natural assumption that tw
elements are in relatioR;, if there are already in relatioR.

The last inclusion (3c) prevents a weakening of the relation
R by linearization which is too strong. The three require-
ments are not independent. Inclusion (3a) implies (3b)) (3b
and (3c) imply (3a).

Proposition 2 Let R be a preorder over the finite domain
M, then there exists a linear preord&;, which obeyg3a)
(3c).

The proof of the proposition (which is omitted due to space

restrictions, see (Feldmann 2005) for further detailsggiv
an explicit construction ofji .
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that satisfying a single goal of higher level leads to a highe
value than an arbitrary number of goals of lower levels. Let
s = {d} ands’ = {a,b,c}. As intended,s gets a higher
value (6) thars’ (5) reflecting the fact that = s'.

Proposition 5 The order on goal stateg,,.;,. induced by
valg by defining(s, s') € Rya, iff valx(s) > valk (') is
a linearization of— .

Proof: Sincewvalx maps states to integerB,,.;,. is obvi-
ously linear. We have to show; C R, (3b)and-7 C

val g
RjalK (3c). These two properties imply (3a). (3b) follows

from the fact that(s, s’) € =% iff s ands’ satisfy exactly
the same goals, in which caselx(s) = valg(s’). (3c)
follows from the fact that whenevés, s') € =7 there must
be a level k such that satisfies a proper superset of level k
goals satisfied by’, and the same goals asin all levels
with higher index. By construction, whatever the satisfied
goals of levels with lower index arealx (s) > valg(s).
O

We can thus find an optimal solution of a PSP by using the
valuation functiorwalk. More precisely, we use a function
¢x on arbitrary states defined as (s) = valg(s) + 1 if
s € Sg, ¢x(s) = 0 otherwise. The addition of 1 makes
sure that each goal state has a non-zero value. This is useful
for the algorithm presented below.

Letsol ve be a complete and correct planning algorithm
for classical planning problems which returns

e atuple(s, ) consisting of a solvable goal stateand a
corresponding plam if the classical planning problem is
solvable.

2\We also use the term metric for valuation functions.



Algorithm 1 Solving PSR = (S, A, ~, s1, Sa, K)
n :=0;
goals := Sg;
repeat
goals :=={s| s € Sa, dx(s) > n};
(s,m) :=sol ve(S, A,n~, sy, goals);
n = ¢k(s);
print msn
until s & goals

¢ the initial state (which is a non-goal state in this case) and
an empty plan if the planning problem is not solvable.

Furthermore, lel’ be a given PSP. Algorithm 1 will compute
an optimal solution fof if there exists at least one solution.
The algorithm works as follows:

1. It applies the classical planner
(S, A,~,sr,Sa), because fon = 0

St ={s| s € Sq,o(s) >n}

is just the set of solvable goal states. If this is unsolvable
thenT is unsolvable and the algorithm stops.

The algorithm tries to increase the quality of a solutibn o
the classical planning problem by excluding all goal states
which are not better than the current best solvable goal
statesg. Then it appliesol ve to the more demanding
problem

(SvA7778175é}’ = {3 | s € SG7¢(S) > ¢(SE)})

In each iteration step the quality of the found solvabla go
state increases. Formally the algorithm terminates if it
finds no better solvable goal state. The best solvable goal
state obtained and its corresponding plan (assuming com-
pleteness and soundness of the classical plaswileve)
constitute a solution of the PSP.

The following aspects seem important for the evaluation of
Algorithm 1 :

to the problem

Searching for a plan unsuccessfully takes a lot of time. In
Algorithm 1 such a search can happen only once, after an
optimal solvable goal state was found.

Algorithm 1 is presented as an external function which
uses the underlying planner as black-box. In doing so, we
gained independence of the particular planning method
at the expense of performance. However, depending on
the planner at hand, it should pose no serious problem to
implement our proposed algorithm directly into the plan-
ner. In this way the performance can be increased since it
is now possible to reuse information from previous itera-
tions.

The algorithm is sound and complete if the underlying
classical planner has the same properties. It can also be
used as an anytime-algorithm which prints successively
the best solvable goal state found so far.

Expressing PSP in PDDL based languages

In 1998PDDL (Ghallabet al. 1998), a new representation
language for planning problems extendiABL (Pednault
1989) andSTRI PS (Fikes & Nilsson 1971), has been pub-
lished. This language has become a de facto standard due to
the increasing needs for describing more realistic anckther
fore more complex planning problems.

A recent versionPDDL2. 1 (Fox & Long 2003), also
supports numerical constructs. More precisely, in addlitio
to atomic formulae (as irSTRI PS) PDDL2. 1 also sup-
portsgoal descriptiongdenoted as:GD>) which consist of
complex logical formulae, numerical variables and numer-
ical comparisons. The exact syntax and semantics of goal
descriptions can be found in the definition of ieDL2. 1
language (Fox & Long 2003). Very brieflyDDL2. 1 states
can be represented as tuples= (f,v) consisting of a set
f of atomic formulae and &—tuple v of rational numbers.
Theith component of contains the value of thgh numer-
ical variablev;. An atomic formula is true in a stateif
it is contained inf. A numerical comparison holds if the
values of the variables in are consistent with the compar-

Goal states are described as sets of atomic formulae. TheSOn- Using atomic formulae and numerical comparisons as

number of goal states can be exponential in the number of their building blocks, it is now possible to define when goal

atoms. Searching naively for a optimal solvable solution

with respect to a given preference relation requires check-
ing a vast amount of goal states. Using a linearized ver-
sion of the preference relation, this search space is ysuall

much smaller.

In principle, any classical planner can be applied within
Algorithm 1 as long as it supports the restriction of the
goal set using a numerical comparison. In the following
section we will show how this can be doneRBDL2. 1.

We tested this transformation using the publicly available
plannervet ri c- FF (Hoffmann 2003).

The planner will often find better solvable goal states than
required by the limitn in each iteration. This accom-
plishes a fast determination of solvable goal states with
high preferences. In the special case whearés already

an optimal solvable goal state, the algorithm quickly con-
firms this solution.
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descriptions are satisfied in a state.

It should be noted that most of today’s classical plan-
ners support a major fraction ®DL2. 1, or go even be-
yond. In order to benefit from further improvements in this
field, we decided to develop extensionsRRIDL2. 1 to ex-
press preferences and partial satisfaction problems. More
precisely, we introduce two such extensions. The first one,
calledPDDL2. 19, allows us to represent purely qualitative
goal preferences based &K Bs. Its syntax is very simple.
The induced preorder has to be defined by a preference strat-
egy. We will use Def. 1 for this purpose throughout this ar-
ticle. The second language, calleBDL2. 1*, arises from
a somewhat different context. One motivation has been to
condense preference descriptions and the definition of the
RKB into a single language. It is also closely related to
the language of preferential algebras (Andreka, Ryan, &
Schobbens 2002), our construttEX andCAR correspond-
ing to the 'but’ and 'on the other hand’ operators introduced



in the cited work. FurthermoreDDL2. 1* offers new ways
of combining numerical and qualitative measures.

An extension closely related td&DDL2. 1%, called
PDDL3, was recently proposed by Gerevini and Long
(Gerevini & Long 2005). Their extension differs from ours
in several important aspects:

1. PDDL3 contains modal constructs which allow properties
of plan trajectories to be expressed. For instance, the goal
(sometime g) expresses that at some intermediate state
reached by the plap should hold. We focus entirely on
goal states.

Preferences iRDDL3 are numerical rather than qualita-
tive. The plan representation may contain soft constraints
Violation of soft constraints induces certain costs. We
want to be able to specify puretyualitative preferences

in our PDDL language.

Of course, our proposed extensions can also be included in
PDDL 3.
The definition ofPDDL2. 17 is a s follows:
<psp> ::=(define (pspnanme <name>)

(: probl em <nane>)
[ (: donmai n <nane>)]
<goal >
<psp- def >)

(: psp <psp-node>T)

(<GD> positive integer

<psp- def >
<psp- node>

Here<GD> is a goal descriptor. The integers following
goal descriptors indicate the rank of the respective goal. W
can thus represemRKBs in this language. The induced

[ PDDL2. 1* expression 1] evaluation functionval(s, n)

l

|

n=(LEX ny...n;) val(s,n) = >, _; ki val(s,n;)

n=(CAR ny...n;) val(s,n) = Zé,l val(s, n;)

n=(MLT ny...n;) |val(s,n)= Hi:l val(s,n;)
- 1 ifsEn

n = goal description val(s,n) = {0 otherwise

n=d, d€IN val(s,n) =d

Table 1: The evaluation functiorl : S xPDDL2. 1* — IN
maps into the domain of natural numbers. The constignts
in the LEX construct are chosen in such a way that it is al-
ways preferable to have a higher value for a node with higher
index. They can be calculated in advance.

value that can be obtained by the s@i k; val(s,n;).
The exact inductive definition is stralghtforward and thus
omitted.

Following the general discussion in the section on com-
puting optimal plans, we introduce a functigndefined as
¢(s) = val(s,n) + 1if s € Sg and¢(s) = 0 otherwise.
We will call the non-negative integef(s) of a states the
numerical preference value for that state.

Preference descriptions derived frdti Bs can be easily
represented in this language.

Proposition 6 Let K = (Fi,...,F,) be a RKB with

ranked setd’; = {f},..., f/""} of formulae. The linearized
preorder corresponding taalg is equwalent to the pre-

partial preorder on states corresponds to the one defined ingrger defined by theDDL2. 1* expression

Def. 1. The symbokgoal > permits the specification of
obligatory goals and overwrites a corresponding entryén th
problem description file.
The definition ofPDDL2. 1* differs from the one above
in the description okpsp- def >:
<psp- def > (:psp <psp-node>)
<psp- node> (LEX <psp-node>™)
<psp- node> (CAR <psp- node>™)
<psp- node> (MULT <psp-node>T)
<psp- node> <GD>
<psp- node> non-negative integer
Intuitively, LEX represents a lexicographic ordering based
on the values of psp-nodes, where the nodes are written in
order of increasing importanc€AR allows to sum up val-
ues. In the special case where all values are 1 or 0 we obtain
the cardinality of nodes with value 1. Th@JLT construct
makes it possible to multiply values.
The precise semantics of this language is determined by
its corresponding functiomal : SxPDDL2. 1* — IN which
is given in table 1. For anyDDL2. 1* expressiom the
preference relatior,, between td®DDL2. 1 statess ands’
is induced by the functiomal, i.e.

s =y s iff val(s,n) > val(s’,n).

The parameters; in the expression fdrtEX are chosen such
that higher values for nodes with higher index are preferred
This can be achieved by lettilg = 1 + maxval;_; where
mazvaly = 0andfor(1 < j < n) mazval; is the maximal
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(LEX (CAR f{ ... . (CAR fL ... fmey).

Consequently, withifPDDL2. 1* the user can define prefer-
ence descriptions both quantitatively and qualitatively.

my

Implementation

According to Algorithm 1, a PSP is solved by translating
the originalPDDL2. 1 description and the specification of
the preference relation (given PDDL2. 1*) into a (mod-
ified) PDDL2. 1 problem. To specify the restricted set of
goal statesS;, we make use of a numerical comparison. In
detail, the translation of theDDL2. 1* problem consists of
several steps:

1. For each goal descriptiap in the preference expression
n a numerical variablev; is introduced. Substituting the
variables in thePDDL2. 1* expressiom will be denoted
by writing n[{w}.].

2. A mechanism has to be devised such thais 1 if the
planner considers a state in whighis satisfied, and oth-
erwisew; is 0. This can be achieved by a modification of
the actions of the origindDDL2. 1 problem.

. A numerical comparisow[{w};] > qc¢) is added to the
goal list. Herep[{w};] denotes the numerical expression
which is obtained by applying thgfunction symbolically
to the expressiom[{w};]. This numerical comparison
restricts the number of goal states to those statekich

have(s) > qc.



(define
(pspnane PSP868)

: bl depot b7512
E: SL; em depotpro ) (:functions

o ey T
(on crate0 pallet?2) — -
(on crate3 palletl) (VEI GHT ?C - CRATE )

| ( FUEL- COST )
! (PSP V2 )
¢ { LEX (PSP_V-3 )

(PSP_START_METRI C )

avai |l abl e hoi st 2
(avai st2) (PSP_MAX_METRI C )

(cl ear crate0)

lifting hoist2 crate2 ) (:action UNLOAD
) ( g ) :parameters (?X - HO ST ?Y - CRATE
) ) ?Z - TRUCK ?P - PLACE)

:precondition (and (AT ?X ?P) (AT ?Z ?P)
(AVAI LABLE ?X) (IN ?Y ?2))

Figure 1. A complete PSP descriptionPDDL2. 1*. Two ceffect

obligatory goals are specified in thgoal field and three (and (not (1IN ?Y ?27))
soft constraints in: psp. Among the latter, the goal (not (AVAI LABLE ?X))
(avai | abl e hoi st2) has the lowest preference and (LI FTING ?X ?Y)

(decrease (CURRENT_LQAD ?Z) (VEI GHT ?Y))
(when (and(= ?X HO ST2))
(and(assign (PSP_V-1) 0)))
wh d(= ?X HO ST2) (= ?Y CRATE2
4. The algorithm has to give back the valgle = ¢(s) of (when Egﬂdgassi gn (psp)_s/_ 3) 1)) )

the found solvable goal stateof the modifiedPDDL2. 1
problem. This value is determined by numerically evalu- )
ating the expressiog[{w};] in states.

In our implementation, Algorithm 1 is performed by a  Figure 2: An excerpt of the translat®DDL domain. The
Perl-script. The original PSP problem is parsed in a firgt ste  modified pieces are shown in bold face. The introduced nu-
(usingbi son andf | ex) and translated int&DDL2. 1 by merical variable®SP_V- i correspond to thé-th soft con-
modifying the actions and adding a numerical constraint as straint in the psp decription.
indicated above. It should be noted that in our implementa-
tion we restrict goal descriptions to literals. Furthermavre
allow only binaryMULT constructs with at least one compo-
nent being a non-negative integer. As described in detail in
(Feldmann 2005), there is no difficulty in actually extend-
ing this implementation to the general case. We stick to
the restricted language since our translation scheme would
otherwise lead to non-linear numerical expressions, which
Met ri c- FF is currently not able to handle.

As an example, a very simplDDL2. 1* description is
shown in Fig. 1. Fig. 2 presents excerpts of the modified
domain and Fig. 3 excerpts of the problem file. In both
cases, the modifications due to the translatioR@DL2. 1*
into PDDL2. 1 are indicated by bold letters. A com-
plete version of this example can be found on our website

(lifting hoist2 crate2) the highest.

(:init
(= (PSP_V-1) 1)
(PSP_V-2) 1)
(PSP_V-3) 0)
(PSP_START METRI O) 1)
(

‘g

A~~~

PSP_MAX_METRI C) 7)
oal

nd (ON CRATEO PALLET2)
(ON CRATE3 PALLET1)
(<= (PSP_START_METRI O)

—~

-
QAL

http://www.physik.uni-leipzig.de/feldmann/psp/. (+ (* 1(PSP_V-1))
After the translation into PDDL2. 1 the planner (+ (» 2(PSP_V-2))
Met ri c- FF is called. It has been modified slightly to re- (* 4(PSP_V-3)))))

turn the preference value of the found solution. With the )
help of his value, the numerical constraint is updated aed th )
planner is evoked again. If the return valueMgft r i c- FF

is not strictly better than its previous value, the algarith
terminates.

We see the following advantages of our implementation:
(1) it is based on a simple and easily extendible syntax, (2)
it allows for the description of both qualitative and quéati
tive preferences, (3) soft constraints (preferences) and h
constraints (required goals) are combined in a natural way.

Figure 3: An excerpt of the translat&DDL problem file.
The modified pieces are shown in bold face. In addition to
the two obligatory goals the problem description now also
contains a numerical comparison.
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goal ( and

( on crate0 pallet2 ) hard 1000 ) ‘
( on crate3 palletl ) hard 1000 )
(
(
(

avail abl e hoist2 ) soft 2)
clear crate0 ) soft 3)
lifting hoist2 crate2 ) soft 5) ))

0.8
0.6
Figure 4: Excerpt of &apaP*® problem file constructed by 0.4
translating the corresponding PSP in figure 1. The weights

are calculated following table 1 except that an additional gg;vaepljsp/ MFF
constant of 1 is added to each soft constraint. o T

0.2

benefit/optimal benefit

Evaluation

In this section we present initial tests of our algorithmr Fo
this purpose we use the depot domain enriched with numer-
ical expressions which was a planning domain of the IPC3
competition. In order to check validity and correctness of
our approach, we compare our results védpaPs (Do & T oweRse/EE
Kambhampati 2003), which is an existing planning system. 0 : —
The test runs are performed as follows. In a first step the do-
main and problem descriptions are parsed. This information
is used to build our benchmark problems in a random fash- _ )
ion, i.e. rules of th@DDL2. 1* language and the grounding Flg_ure 5: The results for a particular problem are p(esented
instances of predicates are chosen randomly from a uniform Which contains no hard goals and 17 soft goals. In this exam-
distribution. The nesting level of our generated PSP ranges Pl€. both our approach (solid line) aSapaP® (dotted line)
from 1 to 3. Literals are not allowed as top-level PSP-nodes could flnd.a satisfiable goal state. The number of iterations
in order to avoid an excessive number of problems contain- "€fers to either the number of loop passages of our algorithm
ing just a single formula. The number of childnodes is re- OF to the number of internal cycles 8apa®*. Top: the de-
stricted to 4 or less. For the sake of a clear comparison be- Velopment of the benefit normalized to the maximal possi-
tween our algorithm an@apaPs, we are neither invoking ble ben'eﬂt. Bottom: The number of satisfied soft constraints
theMULT rule nor do we use negated literals. Between 1 and normalized to their total number. The search times for this
31 soft constraints are contained in each of our benchmark €xa@mple are 100ms (our algorithm) and 2Safa®), re-
problems. This distribution has an approximately normal SPectively.
shape with a mean of 12.9 and a standard deviation of 5.9
soft constraints. Additionally, a random selection of goal
of the originalPDDL problem description is transferred to ~ Metri c- FF which is written in C.
our PSPs constituting hard (obligatory) goals. The approach oSapaPs relies on action costs to guide

In order to employ SapaP®, we transformed our its search. Therefore, assigning non-zero action cost is e
PDDL2. 1* problems into quantitive problems using sential in order to compare the two systems. More precisely,
weights on goals. This step is analogous to the translation too small 0.01) or too high £100) action costs prevent
of PDDL2. 1* descriptions into th®DDL2. 1 language de- SapaP® from finding a solvable goal state when run on our
scribed in the last section. One particular example of the benchmark problems. We found that cost values of about 0.1
generated PSP problems is listed in Fig. 1. In Fig. 4 an ex- seem towork best. The action costs are re-added to the bene-
cerpt from the correspondirgapaPs problem file is shown. fit after each run. In conclusion, we emphasize SegpaP*

We would like to stress th&apaPs is a system designed ~ Might not be the optimal choice for comparison purposes but
for best-benefit problems which differ from our problems itis one of the best systems at hand at the moment.
in taking costs of actions into account. The main focus of  All tests were performed on a AMD Athlon 64 4000+
SapaPs lies on solving quantitative problems while our al-  with 2GB RAM running Debian Linux. We generated 1000
gorithm can also deal with purely gualitative problems. On benchmark problems, characterized by different numbers of
the other handSapaP® can handle time domains which our  hard and soft constraints. A maximal heap space of 1GB
implementation so far cannot. was allowed for the Java machine runniSgpaPs. This

It should also be noted th&apaP$ cannot parse nu- value was chosen after initial tests and seems to be a good
merical comparisons. Since the original depot domain con- choice. In order to obtain results in manageable time, we as-
tains such a comparison, we use for both planners a mod- signed timeouts to both systems. For 8zpaP® system we
ified version of the original depot domain where the nu- chose a time limit of 60s for each problem. For our system
merical comparison is removed. When considering and Wwe tried several time limits ranging from 100ms to 60s.
comparing running times it should be stressed SggiaP® Fig. 5 shows a particular problem which both planners
is a Java-based application while our algorithm employs were able to solve. This problem contains no hard and 17

0.4

0.2

fulfilled soft goals/total
L L A B
L L L ‘ L L L ‘ L L L

iterations
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Table 2: The statistical results comparing our algorithm an
SapaP*s on the generated benchmark problems. A time limit
of 10s has been applied to our algorithm. For 8apaPs
system we chose a larger time limit of 60s. The partial sat-
isfaction problems are classified according to the number of
soft and hard goals, i.e. HGGj-k corresponds to the set of
problems containing hard goals and between(inclusive)
andk (exclusive) soft constraints. The number of problems
in set HG_SGj-k is given in the second column. The third
column shows the number of problems for which a solvable

problems posed plan found better benefit time limit | plan found | optimal plan found optimality proved
MFF | sapa | both | MFF | sapa 0.1s 994 640 47

Total 1000 994 | 507 | 504 | 336 | 1 1s 994 892 49
HG0.SG00-05 24 24 | 24 | 24 7 10s 994 988 186
HG0.SG05-10 70 70 | 70 | 70 | 42 60s 994 989 989
HGO0.SG10-15 90 90 90 90 65
HG0.SG15-20 85 85 | 84 | 8 | 71 - Table 3: The optimality results of our approach using vari-
HG0.5G20-50 a4 a1 | 42 | 9 | 8 |1 ous time limits from 100ms to 60s. Smaller limits have not
HG1SG00-05 33 8 | 18 18] 2 been used due to the low precision of time measurements be-
HG1SG05-10 87 87 | 40 | 40 | 18 low 100ms. The second column shows the number of prob-
HG1SG10-15 136 136 59 59 44 . .
HG1SG1520 % o T3 T 3 1 38 lems for which a solvable goal state was _found. The third
HGLSG2050 ) o T @ o column states the number of PSPs for which an optimal so-
HG2.5G00.05 o o 3 3 1 lution was computt_ad within the time limit, independently
1GZSG05-10 9 o | 16 | 16 3 of Whether_optlmallty was proven by the system. _The last
HG2SG10-15 8 8 9 9 3 column indicates for how many problems optimality could
HG25G1520 64 64 8 8 8 actually be proven within the time limit.
HG2.5G20-50 25 24 1 1 1
HG3.SG00-05 10 10 2 2 -
HG3 SG05-10 5 5 1 1 difficulty of problems increases from top to bottom. At the
HG3.SG10-15 17 17 same time the number of problems for whigapaPs can
HG3.SG15-20 14 14 find a solvable goal state decreases. Choosing a larger time
HG3.5G20-50 5 5 limit might help to obtain better results f@apaPs. Our ap-
HG4.SG05-10 1 1 proach performs well on all our benchmark problems. In a
HGA4.5G15-20 2 2 future analysis it would be interesting to evaluate our algo

rithm on even more difficult problems.

So far we have addressed the question of whether a solv-
able goal state can be found. In order to actually solve a par-
tial satisfaction problem, we need to find an optimal solgabl
goal state. In fact, we want to distinguish two differentiopt
mality results. A planner can find a solution of a given PSP
with and without knowing that the found solvable goal state
is actually optimal. In order to prove optimality, the plan-
ner has to perform an unsuccessful and thus time-consuming
search. Considering this difference, the results of our-alg
rithm on the benchmark problems are shown in Tab. 3. For

goal state and a corresponding plan has been found. The lastmost of the benchmark problems our algorithm finds an op-

column compares the benefit of the problems for which both
planners found a solvable goal state.

soft goals. Evidently, the behavior is rather similar for a
low number of iterations, but our system converges faster
with respect to the number of iterations and with respect to

timal solvable goal state very quickly, i.e. within a fracti
of a second. We also confirm that it takes a rather long time
to prove optimality of the found solution.

In summary, we have demonstrated that our approach of
solving PSPs actually works in practical situations, isiflex
ble and applicable to a large range of different problenssize
For the benchmark problems at hand, our approach generally

searching time. In this example, both approaches find an returns a plan of equal or better quality than SagaPs sys-

optimal solution of the PSP. The optimality of the solution
could be confirmed by our algorithm setting the time limit to

60s. This specific example is not representative, but demon-

strates the proper working of our algorithm.

The results of both planners on our benchmark problems
are summarized in Tab. 2. We note that for almost all prob-
lems our algorithm could find at least a satisfiable goal state
Interestingly, some of the unsolved problems have a triv-
ial solution. Regarding thiskt ri c- FF system this is due
to the fact that only up to 25 soft constraints can be spec-
ified. We could have increased this limit by adapting the
planner’s source code. Following our methodology of be-
ing planner independent, we decided to avoid such modi-
fications. We added, however, a simple output function to

tem. In addition, since we udeet r i c- FF as underlying
planner, our approach is much faster tisapaPs.

Testing plan optimality

So far we have discussed in this paper the following ques-
tion:

Given a PSH, specified via a ranked goal bake how
do we compute an optimal plan fbf?

The answer we gave was based on a strengthening of the
partial order on plans induced ly. The idea was to come

up with a linearization whose optimal elements are guaran-
teed to be optimal elements of the original partial ordering
on plans. This linearization can easily be translated to-a nu

return the reached numerical preference value. In Tab. 2 the merical measure, which is then represented in a correspond-
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ing metric to be used incrementally as a lower bound for the
computation of plans.
In this section we want to address the following question:

Given a PSR, specified via a ranked goal bakg and
a planP. How do we check whethdP is optimal?

Note that this is not as trivial as it may appear at first sight.
We cannot just compute the metric we used so far, compute
the value for planP and check whether a plan with higher

value exists. The reason is that, although we are guaranteed

to find an optimal plan this way, it is not guaranteed that
an optimal plan is also optimal with respect to the lineariza
tion. Indeed, in most cases some optimal plans will become
suboptimal after linearization.

Consider a simple example. We have the following RKB

of goals:
({d}.{a,b,c})
that is,a, b andc are the most important goalé s less im-

Intuitively, negval; is the value of an unsatisfied goal
from levelj, posval; is the value of a satisfied goal from that
level, mazval; is the maximal value which can be obtained
by satisfying all goals of level and below, andalp(R) is
the sum of all values of goals in any level Bf The values
are chosen such that satisfying an additional goal at lgvel
leads to a higher overall value provided the same goals are
satisfied at all levels with higher index. We will also use
the notatiorval p(g) for a goalg with the obvious meaning:
valp(g) = posval; iff g € S; andvalp(g) = negval; iff

€ N;.
Proposition 7 Let (S4,...,S,) be the goals satisfied by
plan P. P is an optimal plan iff there is no pla#®’ such
that

valp(Si,...,Sy) <walp(S],...,S)),
wheresS’; are the goals contained i@¥; satisfied byP".

Proof: AssumeP is not optimal. Then there is a pla?

portant than the others. Assume there are 2 plans achievingand levelk such that? and P’ satisfy the same goals in lev-

maximal subsets of all goal®; with goal states; = {a, b}

and P, with goal states; = {¢,d}. P, and P, are incompa-
rable since their sets of reached goals of highest impagtanc
{a,b} and{c}, respectively, are not in subset relation. How-
ever, the metric we used so far strictly preféts Simply
using this metric and checking whether a plan with higher
value exists thus does not give the correct results.

For testing optimality of plans another metric is needed.
This metric will have to depend on the pl@hto be tested.
The idea is to use a metric where the satisfaction of a new
goal of the same level can only lead to a higher overall value
whenever all goals of this level satisfied Byare also satis-
fied.

The comparison of plans is based on the comparison
of the goals they achieve. For this reason it is sufficient
to define the metric on sets of ranked goals. két=
(Gy,...,Gy) be the givenRKB of goals, i.e. elements of
G, are of highest priority, those @f,,_; of second highest
etc. Let(Sy,...,S,) be the sequence of subsé&tsC G;
of goals satisfied by pla®, (Ny,...,N,,) those goals not
satisfied byP (i.e., N; = G; \ Sy).

We need to find a numerical measurelp assign-
ing an integer to anRKB R such thatvalp(R) >
valp(Sy,...,Sy,) iff Ris strictly preferred tq.Sy, ..., Sy).
Now if there is a plan obtaining goals with measure higher
than that ofP, then P is not optimal.

We definevalp inductively as follows (in principle, all
functions should have an additional ind&x We omit this
index here for readability):

mazvalg = 0
for eachj (1 < j <mn) let

negval; = mazvalj_1 +1
posval; = |Nj| x negval; + mazvalj_1 + 1
mazval; = |S;| X posval; + |N;| x negval;
+mazval;_;
LetR = (Ry,..., R,) be anRKB. We define

valp(R) := Z(\RiﬁSi| x posval; + |R; N N;| X negval;).

i=1
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els higher thark, and P’ satisfies a proper superset of goals
in level k. Since by construction satisfying an additional
goal in levelk adds a higher value than satisfying an arbi-
trary set of goals from levels, . .., k — 1, the overall value
for P’ is higher than that foP.

Similarly, if P is optimal then we have for each pld
that eitherP’ satisfies exactly the same goalsfaén which
case the overall value is not higher than oy, or there is a
level k such that? and P’ satisfy the same goals in all levels
j > k, and P’ does not satisfy some goaglof level k satis-
fied by P. Again, by construction, the loss by not satisfying
g is higher than the maximal gain obtained by satisfying any
goal of leveli < k not satisfied byP. The overall value for
P’ is thus not higher than that fdr. O

Consider our example. Sind& achieveg{c}, {d}), we
obtain the following values:

valp,(d) =1 walp,(a) =2
valp,(b) =2

The overall value for>, is thus 7, the value faP; is 4, P is
thus optimal. Of course, we also establish tRats optimal.
It is easy to verify that in this case the metric yields

valp,(d) =1 walp,(a) =4
valp, (b) =4 walp,(c) =2

With these values we obtain an overall value of 8 fr a
value of 3 forP;. We have established th&} is an optimal
plan as well.

With these results we can compute the optimality test for
P as follows: we first generatealp(g) for each goal and
compute the overall value fd?. We then add the description
of the metric to the plan description using the overall value
incremented by 1, as lower boung. is optimal iff no plan
satisfying this bound exists.

valp,(c) =6

Discussion and related work

(Brafman & Chernyavsky 2005) present an approach to
planning with goal preferences which shares a lot of motiva-
tion with our proposal, but which also differs in several im-

portant aspects. Their work is based on a particular plannin



method developed in (Do & Kambhampati 2001). The plan- that optimal states with respect to the latter are guardritee
ning problem is converted into an equivalent constraint sat be optimal with respect to the former. A similar translation
isfaction problem (CSP) using a Graphplan encoding (Blum method allows us to test plans for optimality. Our algorithm
& Furst 1997). Brafman and Chernyavsky then use an algo- computes a sequence of strictly improving plans and is guar-
rithm for constrained optimization over CSPs (Brafman & anteed to terminate with an optimal plan. Furthermore, our
Domshlak 2002) which uses so-called TCP-nets, a general- implementation is independent of a particular approach to

ization of CP-nets, for preference elicitation and repmése
tion.

Firstly, our proposal differs from this approach in the way
preferences are represented. Rather than CP-nets wheh giv
preferences aeteris paribugother things being equal) in-
terpretation under which only states differing in exactieo
atom can be directly compared, we use ranked knowledge
bases representing ranked user goals. As demonstrated i
(Coste-Marquigt al. 2004), CP-nets cannot represent arbi-
trary preferences among states, a restriction which does no
apply to RKBs. Secondly, whereas the approach in (Braf-
man & Chernyavsky 2005) depends on a particular planning

method, our approach is independent of the method chosen

for classical planning and is thus able to benefit from furthe
developments in this area. All we require from the classical

classical planning which we see as an important advantage
of our proposal. Results of an empirical evaluation we pre-
sented are promising.
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